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ABSTRACT

Functional RNA elements (FRE) in post-transcriptional regulation of gene expression are often

correlated with distinct RNA structures since FRE must fold into the specific conformations in

which cell factors can recognize and interact with them. Recent computational studies indicate

that the structures of FREs are both significantly more ordered and thermodynamically stable than

anticipated at random. This is because of evolutionary constraints and intrinsicstructural proper-

ties. Various computational tools for discovering well-ordered RNA structures and their structural

motifs have been developed and a number of functional structured RNA elements havebeen de-

termined. Here, we summarize recent efforts in the discovery of structured FRE within complex

genomes by computation.

INTRODUCTION

Complete genomic sequence data are accumulating at an unprecedented pace. Nucleic acids se-

quences of pathogenic bacteria and human genomes provide the fundamental information useful

for us to explore biological properties, such as regulation of gene expression. Although RNA is

transcribed as a single-stranded, almost every RNA molecule has structurethat includes various

double helical, base paired regions formed by fold-back in the correct antiparallel orientation be-

tween complementary segments. In addition to Watson-Crick A:U and G:C base pairs, wobble G:U

and other non-canonical base pairs also contribute to the structural constraints in the secondary and

tertiary structure of RNA molecules.

Recent advances in studies of non-coding RNAs (ncRNAs) and RNA interference (RNAi) indi-

cate that RNA is more than a messenger between genome and protein. The ncRNAs are involved

in various regulatory mechanisms of gene expression at multiple levels [1-5]. Well documented

instances include transcriptional mediation, RNA processing and modification, mRNA stability

and localization, and translation of mRNA into protein [2, 6-10]. The functional structured RNAs

(FSRs) that can perform the regulatory activity comprise transfer RNA, ribosomal RNAs, self-

cleavage ribozymes [2], small microRNAs (miRNAs) [2, 3-5] and various RNAregulatory ele-

ments, such as iron-responsive element (IRE) in the non-coding region (NCR) of ferritin mRNAs

[11], internal ribosome entry sequence in the 5’ NCR [9] and cis-acting RNA elements involving

in nuclear mRNA export, such as Rev response element (RRE) of HIV-1 and constitutive trans-

port element (CTE) of Mason-Pfizer monkey virus [8]. The known biological functions of ncRNA

continue to grow and newly discovered miRNA genes are one of the new classes of regulatory

genes in animals. The� 22 nucleotides (nt) miRNAs can control gene expression by binding to

complementary sites in the 3’ NCR of target mRNAs [12]. It is interesting to note that miRNA
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precursors are of� 80 nt in length and form a conserved fold-back stem-loop structure across the

divergent species in which the conserved� 22 nt miRNA sequences are within one arm contain-

ing at least 16 base-pairings [13]. Intriguingly, about a hundred distinct miRNA genes have been

determined inCaenorhabditis elegans [36] and estimates for the number of miRNAs may range

about0:5 � 1% of total protein-coding genes. It is conceivable that there are a large number of

various FSRs in each genome. The FSR molecules are expected to be characterized by various

structural motifs represented by specific combinations of base pairings and conserved nucleotides

(nt) in the loop regions.

A complete understanding of a FSR requires a knowledge of its 3-D structure. The determina-

tion of its RNA 3-D structure is a limiting step in the study of RNA structure-function relationships

because it is very difficult to crystallize and/or get nuclear magnetic resonance spectrum data for

large RNA molecules. Currently, a reliable prediction of RNA secondary and tertiary structure

from its primary sequence is mainly derived by phylogenetic comparisons with additional enzyme

probing and the sensitivity of nucleotides to chemical modification [14-16]. The phylogenetic

method has been demonstrated by successful predictions of RNA structures for tRNAs, 5S and

16S rRNAs, RNase P RNAs, small nuclear RNAs (snRNAs) and other RNAs, such as group I

intron. Although dynamic programming and energy minimization methods [17-23] for predicting

RNA structure are not as successful as phylogenetic comparative methods, they can be performed

fast and automatically by computer. With improvements of the dynamic programming algorithm

and parameters for the free energy of formation of RNA structural elements,� 70% of known

base-pairs are predicted on average in optimized structures by the widespread MFOLD program

[19-20]. The computed RNA secondary structures from MFOLD are often taken as working mod-

els that are further refined by multiple methods including experimental methods or phylogenetic

comparisons. Moreover, computational methods for analysis and detection of FSRs have made

a great progress recently. A number of tools [24-35] such as tRNAscan-SE, RNAMOT, Palin-

gol, PatScan, Segfold, EDscan, SigED, RNAMotif, and ERPIN have been developed and have

practical applications to the search for FSRs, such as tRNA genes, signal recognition particle and

IRE. Some new computational procedures have been developed for identifying miRNAs encoded

in worm and fly [36-37]. Here, we discuss recent efforts in the discovery of FSRs in genomic

sequences by computation.

FSRs are Uniquely Folded

RNA structure comparison and analysis from numbers of laboratories show that somespecific

combinations of base pairings and some conserved loop sequences in stem-loops are moreabun-

dant in FSRs [38-41]. For example, analysis of a large number of ribosomal RNAs, such as 16S

and 23S rRNAs, identified three classes of 4-nt terminal loops, or tetraloops of GNRA, UNCG
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and CUYG. In addition to rRNAs, GNRA tetraloops are also frequently found inself-splicing ri-

bozymes and RNase P RNAs. The specific base-pairing and stacking implicatedby non-canonical

base-pairings G:A, A:G and R:R has also been found in loop E of eubacteria 5S rRNAs. The so-

lution and crystal structures ofE. coli 5S rRNA segments including loop E display a well-ordered

structure characterized by the major groove narrowing and larger cross-strand distances in the cen-

tral portion of loop E in which 4 out of 9 base-pairings are involved in non-canonical base-pairings

[64]. It includes 2 G:A base-pairings as well as G:G and A:G. Also, the distinct base-pairing and

stacking participated by non-canonical base-pairings and/or bulges are a common structural motif

found in rRNAs, ribozymes and other various FSRs, such as IRE and HIV-1 regulatory elements

RRE and TAR. On the other hand, phylogenetic conservation in FSRs is more impressive than that

observed in the structural motifs of proteins. Statistical analysis indicates that there are about 15

invariant nts in a 76-nt tRNA molecule. Based on the observation of the distinctstructural features

it was suggested that FSRs possess well-ordered conformations that are both thermodynamically

stable and uniquely folded [42].

To test the hypothesis, computational experiments were designed to explore the evolutionary

constraints of the conformation folded in FSRs. Schultes et al. [43] computed three quantitative

measures to estimate the stability and uniqueness of RNA secondary structures based on the mean

length of stems and total number of base pairs in the predicted structure from RNAfold [18] and/or

VIENNA [21]. The comparison of three scores computed from various FSRs and theirrandomly

shuffled sequences indicates that the well-ordered conformations found in the most ofFSRs are

unlikely to arise from evolutionary modification only. Their results show thatthe well-ordered

conformation of FSRs is expected to be rare in the conformation space formed from a population

of the related random sequences.

It is evident that we must inspect the structure morphology in detail to evaluate the structural

uniqueness more precisely. Recently, a novel algorithm (rnamatch) for computing similarity be-

tween RNA structures was proposed [44]. In the structure comparison, each base-pair in helical

duplexs and each nucleotide in single strands are examined and the maximal similarity score (MSS)

between the two structures is computed. Using the quantitative measure MSS,the uniqueness of

an arbitrary RNA structure can be estimated by evaluating the difference between the average

MSS computed from a natural RNA and its related, randomly shuffled sequences and those MSS

computed from random versus random sequences [45]. In the comparison, a standardized z-scoreStscr is introduced and defined asStscr = (RR � NR)=std, whereNR is the sample mean

of computed MSS from the real RNA structure and a set of structures predicted from randomly

shuffled sequences,RR andstd are the sample mean and sample standard deviation of those MSS

computed from the previous random structures versus the additionaln random structures with the

same composition and size as the natural RNA. Thus, the greater theStscr, the statistically more

unique is the well-ordered structure of the natural RNA.

In a computational test experiment on 100 tRNAs, the computedStscr were high and theStscr
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values averaged to2:94 � 1:02 indicating that the structural conformations of the natural tRNAs

was significantly different from those of corresponding random structures, the uniqueness of the

common cloverleaf structure was statistically significant. Also, therandom tests for other FSRs

including RNase P RNAs, TAR and RRE of HIV-1, IRES of HCV and ribozyme showed that the

FSRs had well-ordered conformations that were unlikely to occur by chance. These tests strongly

support the hypothesis that the well-ordered structures of FSRs are both thermodynamically stable

and uniquely folded. It also indicates that the measurement of thermodynamic stability alone is

not enough for us to characterize the structural features folded in the FSRs. FSRs consist of a

well-ordered folding sequence (WFS).

Computational Strategy and Tactics in Finding FSRs

In addition to the development of efficient algorithms for predicting RNA high-ordered structure

from the primary sequence, the another major goal of RNA structure computation is todiscover

potential FSRs in RNA sequences, and to correlate them with known experimental properties and

to suggest candidate sites for further experimental study. Currently, there isno effective compu-

tational approach to detect FSRs that lack sequence or structure homology to one of theknown

FSRs. In general, computational prediction of potential FSRs in genomic sequencesis further

verified by experimental testing of expression levels, functional assay by deletion or mutagene-

sis and structural analysis. Currently, our computational strategy is often to delimit the potential

FSR in a RNA sequence by searching for WFSs or unusual folding regions (UFRs). From the

WFSs detected by a robust statistical inference we then explore the common structure features in

homologous RNAs. Once the WFS is found to be both significantly stable and phylogenetically

conserved it can be selected as a candidate for potentially FSR element. The homologous FSRs

can be searched from sequence databases by pattern search tools based on both theprimary se-

quence and the high-ordered structure of the experimentally verified FSR. Our tactics used in the

procedure are summarized in Fig. 1.

Discovering WFSs in a Genomic Sequence

WFSs can be characterized by the thermodynamic stability and distinct conformation of the struc-

ture folded in local segments within a genomic sequence. Previously, WFSs wereoften searched

by computer programs Sigstb and Segfold [33]. Sigstb and Segfold are used to explore amRNA

sequence by choosing successive fragments and comparing the computed free energy of the ac-

tual sequence to a number of randomly shuffled sequences of the same size and composition.

The highly stable or unstable regions are statistically inferred and termedunusual folding regions

(UFRs). It has reported that the detected UFRs in HIV-1, HIV-2, and other related viruses are
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                   I nput Genomic Sequen ces

   Discovering Well−ordered    Discovering Unusual Foldin g 
   Folding Sequences (WFS)      Regions (UFRs) by Sigstb 
          by EDscan                   and Segfold

                   Statistical Inferen ce 
                     for WFS by SigED

   Computing Common RNA                         
    Structures  by RNAGA
                           Selection o f Potential FSRs that 
                          Are Both Significantly Stable a nd
                             Phylogene tic Conserved WFSs

         
            Experime ntal Testing for Po tential FSRs
             

         
              Finding Homologues of Ve rified FSRs
                in Databases by Patter n Search 
            Tools, such as RNAMotif an d HomoStRscan   

Figure 1: Procedure of discovering FSRs in genomic sequences. For details of the programs EDscan [34], Sigstb, Segfold [33], SigED [35],
RNAGA [57], RNAMotif [28] and HomoStRscan [58] see previouspublications.

coincident with the RRE and TAR[46-51].

In a recently developed computational tool EDscan [34], we used a quantitative measureEdiff
to evaluate the quality of an arbitrary WFS. The measureEdiff (Si) of a given RNA segment (Si)
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is defined as the difference of free energies between the folded global minimal energy structure

(E(Si)) and its corresponding optimal restrained structure (ORS) in which all theprevious base

pairings in the global minimal structure are forbidden (Ef (Si)). We haveEdiff (Si) = Ef(Si)� E(Si) andZscre(Si) = Ediff (Si)� Ediff (w)std(w)
whereEdiff (w) andstd(w) are the sample mean and standard deviation, respectively, of theEdiff scores computed by sliding a fixed-length window in steps of a few nt from 5’ to 3’ along

a RNA sequence. It is clear that the scoreZscre(Si) is a z-score, a standardized measure ofEdiff (Si). We expect that the greater theZscre(Si) of the segmentSi, the more well-ordered is

the folded RNA fragmentSi.
EDscan utilizes a dynamic programming algorithm and Turner energy rules [18, 20] to computeEdiff (Si) andZscre(Si) by scanning the RNA sequence. In searching for distinct WFSs in the

sequence, we often take following steps. (i)Zscre(Si) is computed by sliding a window with a

chosen size, for instance 80 nt in searching miRNAs, along the sequence. The potential interesting

regions with highZscre(Si) are chosen based on the statistical distribution ofZscre(Si) (1 � i �N �W + 1) computed by EDscan, where N and W are the length of the sequence and the sliding

window. (ii) The precise locations of those potential targets in which the foldedstructure is highly

well-ordered are inferred by an extended search in the regions determined from the step 1. In the

extended search, the distributions ofZscre in the selected regions are repeatedly computed by a set

of windows whose size is systematically changed over a range of sizes (e.g. 60-100for miRNAs).

The maxima ofZscre(Si) are extracted to determine the optimized WFSs. (iii) The statistical

significance of the computed WFSs is further tested by Monte Carlo simulation. For example, we

may repeatedly compute theZscre(Si) distribution in the randomly shuffled sequences using same

procedure and parameters as used in the calculation of the natural sequence (seenext section). The

expected probability of a WFS detected in the natural sequence can be estimated from the random

test.

Statistical Extremes of WFSs in the Sequence

To estimate the statistical extremes of WFSs in a long sequence, we needa good statistical model

to describe the distribution ofZscre in a large sample. Statistical analysis indicates that theZscre
data show asymmetry with sample mean,m = 0, sample standard deviation,std = 1:0. The distri-

bution ofZscre is skewed toward the positive direction with a long tail and it is not wellfitted by

a normal distribution (see Fig. 2). To well estimate the statistical significance ofZscre for a given

RNA segmentSi we need to know what is the general behavior ofEdiff (RSi) of a set of random
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Figure 2: Empirical probability density functions ofZscre scores computed from 50 random sequences of 2500-nt. The empirical bar

functions are plotted with step size ofZscre = 0:05. Zscre were computed by sliding a 80-nt window stepped with 5-nt each time along the

randomly shuffled sequence.

sequences,RSi;1, : : : ,RSi;m, that are made by randomly shuffling the local segmentSi rather than

the complete sequence. In a novel method SigED [35], a standard z-score,SigZscre(Si) was em-

ployed to evaluate the statistical significance of the energy differenceEdiff (Si) computed from the

segmentSi. SigZscre(Si) = Ediff (Si)� Ediff (RSi)std(RSi)
whereEdiff (RSi) andstd(RSi) are the sample mean and standard deviation ofEdiff (RSi;1),: : :, Ediff (RSi;m). And Ediff (RSi;1); : : : ; Ediff (RSi;m) are the m values of energy difference

computed from the m randomly shuffled sequences,RSi;1, : : : ,RSi;m. It is important to note that

randomizations are done by shuffling so that the same base compositions and sizes as thenatural

fragmentSi are maintained. Similarly, we have
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Ediff (RSi;j) = Ef (RSi;j)� E(RSi;j) (1 � j � m)
whereE(RSi;j) is the lowest free energy of the random fragmentRSi;j andEf (RSi;j) is the

minimal energy computed from the ORS ofRSi;j in which all the previous base pairings formed

in the lowest free energy structure are prohibited.

To facilitate statistical inference for distinct loops and base-pair stacking, the measureEdiff can

be divided into two parts,Estemdiff andEloopdiff , to characterize the structural features of the

base-pair stacking and loops, respectively. WhereEstemdiff is defined as the energy difference

contributed by base-pair stacking only between the lowest free energy structure and its correspond-

ing ORS.Eloopdiff is defined as the energy difference contributed by loops only between the two

structures as mentioned above. Furthermore, we can define the other two standardized z-scores,SigSteme(Si) andSigLoope(Si) for the given segmentSi [35]. The two z-scores,SigSteme(Si)
andSigLoope(Si) are helpful in discovering distinct loops and significantly unstable folding re-

gions. The method SigED is used to infer statistical extremes of WFSs by computing SigZscre,SigSteme andSigLoope with scanning successive segments along a nucleotide sequence.

Prediction of Common RNA Secondary Structures

A number of computational methods [52-56] for predicting common RNA secondary structure for

a set of related RNA sequences have been proposed. Most of these methods start with a set of pre-

dicted RNA structures computed from their related RNA sequences by a thermodynamic dynamic

programming algorithm and their multiple sequence alignment. The predicted base-pairings are

gradually refined by the analysis of sequence covariation or mutual information sothat a common

RNA structure for the set of RNAs is emerged. The recently developed program RNAGA [57] is

different from other approaches. The method RNAGA employs a genetic algorithm (GA) to search

for a common secondary structure without the need for pre-aligned homologous RNA sequences.

One of the remarkable features of RNAGA is that RNA secondary structures areautomatically

optimized by not only the free energy of the formation of the structure but also the structural simi-

larity among homologous sequences [40]. The program is a three-step procedure. In the first stage,

a GA is used to generate a population of RNA secondary structures that satisfy certain conditions

of thermodynamic stability. In this step, the free energy of a folded structure is taken as a fit-

ness criterion. Secondly, the structural similarity between any two structures within the population

of RNA secondary structures is computed. With the quantitative measure of structural similarity

as the fitness criterion, a GA is then used to improve the structural similarity among homologous

RNAs for the structures in the population of a sequence. Finally, those structuresthat satisfy certain

conditions of thermodynamic stability and structural conservation are selected as predicted com-

mon structures for a set of homologous RNAs. As a result, RNAGA solves the alignment problem
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of multiple sequences and the folding problem of common RNA structures simultaneously. The

program also ranks the predicted common structures based on the structural similarity score in

descending order. In a test including a set of 20 tRNA sequences, 25 5S rRNAs, 7 HIV-1 RREs

and 10 RRE of HIV-2 and SIV, fairly convincing common secondary structures were obtained by

RNAGA in the top 10 ranked solutions [57].

In the method, a secondary structure is considered as an individual in the population. A struc-

ture is encoded as a set of stems, such asT = fs1; s2; � � � ; sng. A random structure in the sequence

is produced by randomly choosing a stemsi from the stem list consisting of all possible stems

occurred in a sequence. In the structure construction in the first step of the approach, a stem can

be added to the structure only if the addition of a stem increases the structure stability, otherwise

the addition is determined by the Boltzmann rule. The process is repeated againand again until

no more such stemsi can be added from the stem list. In the optimization, RNAGA operates on

a population of tentative solutions by crossover and mutation operators. Thus, an offspring of the

two parental structures is constructed by crossover and/or mutation on the parental structures.

Database Search for RNA Structural Motifs

Over the last decade the computational search methods for distinct RNA structural motifs have

made great progress. A number of database search tools have been developed and have practical

applications to the search for known FSRs and their homologues [24-32, 58]. In general, these

pattern search tools can be divided into two groups. Tools in the first group are designed to search

for a specific FSR, such as tRNAs. Among them, the method tRNAscan-SE is very efficient and

successful in finding tRNA genes in complete genomes [32]. The methods in the second groupare

designed and optimized to find general RNA structural motifs. Most of these algorithms provide

a descriptor that can describe the RNA structural elements of known FSRs and apattern search

algorithm to match and score the patterns found in the genomic sequence. The recently developed

algorithm, RNAMotif [28] is more powerful and efficient than others. A significant improvement

in RNAMotif is that its descriptor can specify any type of base-base interaction and RNA struc-

tural element. Also RNAMotif provides a user controlled scoring system thatcan be used to add

capabilities in the pattern matching.

The main shortcoming of pattern-based search tools is a general inability to incorporate infor-

mation of sequence and structural feature in detail. Holbrook and colleagues [63] have proposed

a general computational approach to identify FSRs in genomic sequences using neural network

simulations. We recently developed a novel algorithm, HomoStRscan, of searching for homolo-

gous FSRs by scanning a genomic sequence [58]. HomoStRscan differs from other currently used

approaches in considering each base and base pair in the query RNA. Among them, anytype of

base-base interaction is allowable. The algorithm finds the most similar structure to match the
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query structure in an arbitrary segment in the target sequence. The size of thearbitrary segment

ranges near the length of the query RNA, and can be flexibly controlled by users. Simultane-

ously, the MSS between the query RNA and each computed matching structure from the target

sequence is calculated. The homologous RNAs are then predicted by robust statistical inference

from the MSS distribution computed by moving a window along the target sequence. Thus,Ho-

moStRscan can be used to search in the genomic sequence for any RNA motif corresponding to

an established secondary structure. Computational test experiments for several complete bacterial

genomes proved to be very effective in finding ncRNAs, such as tRNAs and 5S rRNAs [58].
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10



Discovering Functional RNA Elements

Functional Structured Elements in the 5’UTRs

Experimental studies revealed that a special region called the internal ribosome entry segment

(IRES) allowed the translational machinery to skip over upstream AUGs[9]. The IRES elements

detected in cellular mRNAs are quite divergent and their sizes range to initiate translation at the

correct codon from� 100 nt in human immunoglobulin heavy chain binding protein mRNA to� 630 nt in the 5’UTR of B chain of human platelet-derived growth factor. The predicted common

structural core in these cellular IRES elements shows a distinct Y-shaped stem-loop structure (a

3-way junction) [59-61]. While it is still true that most mRNAs initiate translation from their

first AUG there are a growing number of interesting cases where internal initiation plays a role

in regulation of expression at a post-transcriptional level. A statistical analysis of the upstream

AUG (uAUG) in a database of 5’UTRs, UTRdb [62], indicated that� 56% of human mRNAs

have no uAUG in the 5’UTR and 901 out of 6669 (� 14%) human mRNAs have three and more

uAUG codons. We found that a number of mRNAs of oncoproteins, growth factors, transcription

factors, signal transduction genes and immune or inflammation mediators have a long,GC-rich and

structured 5’ UTR with multiple uAUG. Using the integrated approach shown inFig. 1, we found a

common Y-shaped stem-loop followed by a short, 18S rRNA-complementary sequenceimmediate

to the initiator in a number of cellular IRESs and other long 5’UTRs of high G+C content and

multiple uAUGs (see Fig. 3, Tables 1 and 2). This common structural motif is suggested to be

associated with the important biological role of reported cellular IRESs.

Fold-back Stem-loops of the Reported miRNA Precursors are Coincidentwith Statistically
Significant WFSs

The genome ofC. elegans is organized into six chromosomes with total size of about 100

million nts. We computed theZscre distribution by EDscan [34] by scanning the fixed-length

window of 80-nt with a step of 5 nt along each chromosome sequence. We found some interesting

noncoding regions in which the computed WFS elements with very highZscre were clustered. As

shown in Fig. 4 we detect those WFSs that are coincident with the well known miRNAs, mir-35,

mir-37, mir-38, mir-39, and mir-40.

Using the profile of computedZscre in the genomic sequences we can further refine the analysis

of WFS by SigED [35]. The bestSigZscre scores of WFSs that are associated miRNAs are

summarized in Table 3. Our results indicate that mostSigZscre scores are greater than 3.5 and

their expected random probability is less than 0.0002. It shows that the fold-back stem-loops

folded by the precursors of known miRNAs inC. elegans genome are closely associated with

the statistically significant WFSs. With the additional information, such as miRNA phylogenetic

conservation, EDscan and SigED can be used to search for ncRNAs in genomes.
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-------------------------------------------------------------------------

5’UTR Size No. of Y-shaped Structural Motif Complementary

(nt) uAUG A B C D Sequence

-------------------------------------------------------------------------

Human 5’UTR having Cellular IRESs

AML1 1580 15 1469-1480 1482-1520 1521-1545 N CUUGUUGUG(0 nt)AUG

//1546-1558

BiP 221 0 129-142 144-160 161-179 N ACuGGCU(6 nt)AUG

//183-194

C-myc 513 0 228-249 252-311 313-336 Y UGcUUAGAC(1 nt)CUG

//340-368 (CUG is an alternative initiator for C-myc)

eIF4G 368 4 219-236 237-259 260-296 N GAUCCaaACC(29 nt)AUG

//301-317

FGF-2 466 3 204-221 222-241 242-259 N GCGGCU(5 nt)CUG

//263-276 (CUG is an alternative initiator for FGF-2)

355-369 371-391 392-418 N GGgGAUCCcgGCC(16 nt)AUG

//420-437

PDGF2 1022 3 941-944 946-969 970-990 N GCCcggaguCGGC(0 nt)AUG

/c-sis //992-995

VEGF 1038 1 845-855 858-907 909-977 Y GGCCUCC(6 nt)AUG

//978-987

Human Cellular 5’UTRs

abl 340 6 225-236 237-285 289-307 N GGU--ACC-UAUUAUuACUUU

(M14753) //309-321 -(0 nt)AUG

c-abl 364 0 282-294 295-320 321-338 N UGGcGcAA-A(0 nt)AUG

(M14752) //339-355

bcr 488 2 373-383 385-404 405-437 N GGCGG--CGC(9 nt)CGGC

(X02596) //445-455 -(6 nt)AUG

c-erb 333 3 118-135 138-191 192-231 Y GGcAUCC(9 nt)UUGaa

(Y00479) //232-249 -GUGA(0 nt)AUG

c-erbA-1 466 4 248-266 269-323 324-364 Y GGcAUCC(9 nt)UUGaa

(X55005) //365-382 -GUGA(0 nt)AUG

IL-15 316 10 221-233 234-244 245-277 N UAAgGAUUUACC--GU

(X91233) //279-290 ----GGCUUU(5 nt)AUG

Int-2 491 3 396-406 410-425 426-442 Y GAUGCC(3 nt)AUG

(X14445) //445-456

mas 267 3 117-131 134-194 197-234 N CCaACCU-GaGGCcU

(M13150) //235-249 -(4 nt)AUG

mos 479 1 369-381 383-437 439-452 N AUcAUC(0 nt)AUG

(J00119) //461-473

-------------------------------------------------------------------------

Table 1:Y-shaped structural motif and a short complementary sequence to the 3’ end of human 18S rRNA sequence found in the cellular IRESs

and some large cellular 5’UTRs that contain multiple upstream AUG. The folding regions of stems A, B, and C in the Y-shapedmotif (see Fig. 3)

are listed in the columns 4, 5 and 6. An additional stem-loop Dbetween the Y-shaped motif and 18S rRNA-complementary sequence is denoted by

letters Y (Yes) and N (No) in the seventh column. The 18S rRNA-complementary sequences are represented by capital letters in the last column.

All of complementary sequences observed in human 18S rRNA are located at the upstream and/or downstream single-stranded regions (1823-1838

and 1861-1869) of the folded hairpin structure (1839-1860)in the 3’-end as shown in Fig. 3.
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-------------------------------------------------------------------------

5’UTR Size No. of Y-shaped Structural Motif Complementary

(nt) uAUG A B C D Sequence

-------------------------------------------------------------------------

Mouse and Other Cellular 5’UTRs

abl-2 144 3 55-68 70-93 95-114 N UCCaGCCUcCGAC(0 nt)AUG

(U13835) //115-125

abl-3 219 0 91-101 102-136 137-153 N UAA-GGUCCuugugaGCC

(X07539) //155-166 -acgUUGUGGU(25 nt)AUG

abl-4 1168 11 1059-1068 1069-1116 1119-1133 N CACCUaUUAUuGCUUU

(X07541) //1134-1145 -(0 nt)AUG

Rat BiP 206 0 114-126 128-141 142-157 N CCGCUgagcgACuGACU

(M14866) //158-169 -(19 nt)AUG

Hamster 150 0 64-73 74-88 89-110 N GGCCCACagcGCcGGC

BiP (M17169) //114-125 -(3 nt)AUG

int-2 864 3 776-788 789-805 806-817 Y GAUGCC(3 nt)AUG

(Y00848) //821-833

Rat FGF-2 532 0 310-321 323-337 338-362 N GUCCgGCU(8 nt)CUG

(M22427) //363-375 (CUG is an alternative initiator for FGF-2)

438-450 452-469 470-493 N GUCCcgggGCC---

//497-510 ---GCGG(7 nt)AUG

Rat C-myc 413 0 71-92 94-139 143-188 Y UUAUU-UGA(3 nt)CUG

(Y00396) //194-222 (CUG is an alternative initiator for C-myc)

mas 341 5 87-105 107-145 146-189 N CCACCg(0 nt)AUG

(U96273) //193-211

mos 479 1 369-381 383-437 439-452 N AUcAUC(0 nt)AUG

(X12449, Monkey) //461-473

Rat mos 482 2 369-384 386-440 441-458 N UAAUc(0 nt)AUG

(X52952) //464-477

Chicken 487 4 377-389 391-445 448-463 N AUcAUC(0 nt)AUG

mos (M19412) //469-481

Xenopus 483 2 373-385 387-441 444-458 N AUcAUC(0 nt)AUG

mos (X13311) //461-477

VEGF 1014 1 818-829 832-880 883-951 Y AcGGcCU-CC(6 nt)AUG

(U41383) //952-962

Bovine 533 0 352-362 365-413 416-484 Y caGGcCU-CC(6 nt)AUG

VEGF (M32976) //485-494

Yeast 528 11 438-450 453-469 470-491 N ACCUaUUAC(4 nt)AUG

eIF4G (L16923) //493-507 (Yeast TIF4631)

Yeast 528 4 437-453 455-467 468-486 N AAUaGAUCaaUUGU-Ag-

eIF4G (L16924) //490-502 (Yeast TIF4632) GcACU(0 nt)AUG

-------------------------------------------------------------------------

Table 2:Y-shaped structural motif and a short complementary sequence to the 3’ end of human 18S rRNA sequence found in the cellular IRESs

and some large cellular 5’UTRs that contain multiple upstream AUG. The folding regions of stems A, B, and C in the Y-shapedmotif (see Fig. 3)

are listed in the columns 4, 5 and 6. An additional stem-loop Dbetween the Y-shaped motif and 18S rRNA-complementary sequence is denoted by

letters Y (Yes) and N (No) in the seventh column. The 18S rRNA-complementary sequences are represented by capital letters in the last column.

All of complementary sequences observed in human 18S rRNA are located at the upstream and/or downstream single-stranded regions (1823-1838

and 1861-1869) of the folded hairpin structure (1839-1860)in the 3’-end as shown in Fig. 3.
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Table 2. The reported miRNAs inC.elegans genome and their corresponding WFS determined by EDscan and SigED.

----------------------------------------------------------------------------------------------------------------

Gene Corresponding Well-ordered Folding Sequences (WFS) SigZscr

----------------------------------------------------------------------------------------------------------------

lin-4 UUCCCUGAGACCUCAAGUGUGAGUGUACUAUUGAUGCUUCACACCUGGGCUCUCC 3.34

let-7 UGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAG 8.35

mir-1 GUGACCGUACCGAGCUGCAUACUUCCUUACAUGCCCAUACUAUAUCAUAAAUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGGGUGGU 7.01

mir-2 CAUCAAAGCGGUGGUUGAUGUGUUGCAAAUUAUGACUUUCAUAUCACAGCCAGCUUUGAUG 3.85

mir-34 AGAGGCAGUGUGGUUAGCUGGUUGCAUAUUUCCUUGACAACGGCUACCUUCACUGCCACCCCGAACAUGUCGUCC 5.11

mir-35 UCAGAUCGAGCCAUUGCUGGUUUCUUCCACAGUGGUACUUUCCAUUAGAACUAUCACCGGGUGGAAACUAGCAGUGGCUCGAUCUUUUCC 9.49

mir-36 GUCGGGGAACCGCGCCAAUUUUCGCUUCAGUGCUAGACCAUCCAAAGUGUCUAUCACCGGGUGAAAAUUCGCAUGGGUCCCCGAC 7.36

mir-37 CCCUUGGACCAGUGUGGGUGUCCGUUGCGGUGCUACAUUCUCUAAUCUGUAUCACCGGGUGAACACUUGCAGUGGUCCUC 5.55

mir-38 AGGUCCUGUUCCGGUUUUUUCCGUGGUGAUAACGCAUCCAAAAGUCUCUAUCACCGGGAGAAAAACUGGAGUAGGACCUG 10.01

mir-39 GAGAGCCCAGCUGAUUUCGUCUUGGUAAUAAGCUCGUCAUUGAGAUUAUCACCGGGUGUAAAUCAGCUUGGCUCUGGUGU 6.97

mir-40 CCGCACCUCAGUGGAUGUAUGCCAUGAUGAUAAGAUAUCAGAAAUCCUAUCACCGGGUGUACAUCAGCUAAGGUGCGGGU 6.85

mir-41 UCCCAGAGACCUUGGUGGUUUUUCUCUGCAGUGAUAGAUACUUCUAACAACUCGCUAUCACCGGGUGAAAAAUCACCUAGGUCUGGAGCC 3.45

mir-42 GGACCUUUGUGGGUGUUUGCUUUUUCGGUGAAGUUGUCUUCCGUAGCUUCUUCUUCACCGGGUUAACAUCUACAGAGGUCCAAAAAGGGG 7.80

mir-43 GCCCGUGACAUCAAGAAACUAGUGAUUAUGCCAAACCACAGGGACAUAUCACAGUUUACUUGCUGUCGCGGGCGG 10.39

mir-44 GGCCAAUCUGGAUGUGCUCGUUGGUCAUAGACGUCAACACGAACUGUUCAUAUGACUAGAGACACAUUCAGCUUGGCCUG 6.76

mir-45 GUGCCACGCUGGAUGUGCUCGUUAGUCAUAAUAUCCUCCACAAAGCAAGGACUAUGACUAGAGACACAUUCAGCUUGGCG 9.80

mir-46 GCUGAAGAGAGCCGUCUAUUGACAGUUCAAGACCACGAGUCGUUGUGUGCUGUCAUGGAGUCGCUCUCUUCAGAU 5.55

mir-47 AAACUGAAGAGAGCAGUCUAUUGACAGUCGGUUACUCGAAAUCUUUACUGUCAUGGAGGCGCUCUCUUCAGAUGA 7.88

mir-48 aactctgggaatgcgagctaggctggtggatgtgagataccgttcaatTCGCATCTACTGAGCCTACCTCAagttcccgggagtt(antisense) 8.17

mir-49 AAAAGACCACCGUCCGCAGUUUGUUGUGAUGUGCUCCAAGCAAUCAUGAGUCUGAAGCACCACGAGAAGCUGCAGAUGGAGGUUC 3.86

mir-50 UGCCCGCCGGCCGCUGAUAUGUCUGGUAUUCUUGGGUUUGAACUUCCAGCGUUGAACCCGCAUAUUAGACGUAUCGACGGCCGGCGGGGC 10.32

mir-51 CGUCUACCCGUAGCUCCUAUCCAUGUUACUGGUCAAAAAGUGAACAUGGAAGCAGGUACA 3.84

mir-52 UCCAACUCUAACAGUCCACCCGUACAUAUGUUUCCGUGCUUGACAGCGAAGCUCAAUCACGUUACAAUGAAAGGGUAGCCGGUUAUUGAAGUUGG 3.24

mir-53 ACCCGUACAUUUGUUUCCGUGCUUGACUUCAAAGCUCAAUCACGGCACAAUAUAUGGGUC 3.55

mir-54 CGCUCUGACUAGGAUAUGAGACGACGAGAACAUUGCUUUUUUAAAAGACUUGUACCCGUAAUCUUCAUAAUCCGAGUCAGGGCUAGCUGA 5.49

mir-55 GGGACUCGGCAGAAACCUAUCGGUUAUACUUUUUGGAUAUGCUAUACCCGUAUAAGUUUCUGCUGAGCCCCUUAU 7.95

mir-56 CUGUUCUUGGCGGAUCCAUUUUGGGUUGUACCUCAUCCUAAAUUUGACGGUACCCGUAAUGUUUCCGCUGAGAACCGACU 7.51

mir-57 CUACCCUGUAGAUCGAGCUGUGUGUUUGAAACAAUCAUACACGAGCUAGACUACAAGGUGCACGAACAAACCGAA 4.39

mir-58 CAUAUCCAUUGCCCUACUCUUCGCAUCUCAUCACUUCGUCCAAUACCAUAGGGAUGAGAUCGUUCAGUACGGCAAUGGAC 5.52

mir-59 UAUGACAUCGUCCUGAAAACGAAACGGAACAAAAGUUCAAGAUAUUGAUUUCGAAUCGUUUAUCAGGAUGAUGUG 5.63

mir-60 UCUUGAACUGGAAGAGUGCCAUAAAAUCAUGACAAAGUACGUGAUAUUAUGCACAUUUUCUAGUUCAAGACUUGA 10.43

mir-61 UAUCGCUGAACCUCGAGAUGGGUUACGGGGCUUAGUCCUUCCUCCGUAUGGCAAUGACUAGAACCGUUACUCAUCUCGAGGUUUCGGUGA 8.11

mir-62 GGUGAGUUAGAUCUCAUAUCCUUCCGCAAAAUGGAAAUGAUAUGUAAUCUAGCUUACAGG 5.18

mir-63 GACACAAUUUCUAACUCGUCGGUAGUCAUCGUUCUAGCUGAAAAGGACACUAUGACACUGAAGCGAGUUGGAAAUAGUGGUUCUA 8.24

mir-64 CGCCGAAUAUGACACUGAAGCGUUACCGAACCGUUUUCCCACACCUGGAUUCGGUGCAACGAUCAGUGGCAUGCUCGGCU 5.70

mir-65 AUGGAGCCUUCGCCGAUUAUGACACUGAAGCGUAACCGAACACCAUAUUUUGAGAUUCUG..(25 nt)..GUUGGCUCCAUUAAA 4.09

mir-66 CCACAAAAAUGCCAUACAUGACACUGAUUAGGGAUGUGAUGAAUGUUAAGAUCCCGAUCA..(20 nt)..AUGGCGUAUGUGGUU 7.20

mir-67 GUCGAUCCGCUCAUUCUGCCGGUUGUUAUGCUAUUAUCAGAUUAAGCAUCACAACCUCCUAGAAAGAGUAGAUCGAUUUU 9.96

mir-68 UUUUGAAAUUCAUUUUUCUGAAUUUCACACUUUCAGUUAGUUGAUAUUAACGUUUGUAAAUAGGAUGGUAUAUUCGAAGACUCAAAAGUGUAGAC 3.06

mir-69 UUAAUUUAAUUUUUUUUUAAUUUUUAACGGGGUUAUUCAAGUAAUAUCGAAAAUUAAAAAGUGUAGACAU 3.33

mir-70 UCAAAAUAAA..(25 nt)..CGACGAAUAACACUUAUGAAGAAAUGUAAUACGUCGUUGGUGUUUCCAUAGUUUGAAUUGUUUAU 4.15

mir-71 CUGCUCUGAACGAUGAAAGACAUGGGUAGUGAGACGUCGGAGCCUCGUCGUAUCACUAUUCUGUUUUUCGCCGUCGGGAU 4.57

mir-72 GGUCCCGUCAGAGCUAGGCAAGAUGUUGGCAUAGCUGAAUGAUCGCUAUAACAACUAUCAGCUUCGCCACAUUCUGCCACGCACUGAUGU 3.69

mir-73 CACACACGACUGGACUUCCAUAUCGAGCCACAGCUAUCAACGAAUUUGCUGGCAAGAUGUAGGCAGUUCAGUUGU 2.77

mir-74 AAAUGGUUCA..(20 nt)..CUCUUUCCCAGCCUACAUCUCAACCUGGGCUGGCAAGAAAUGGCAGUCUACACGUUUUUCAACCA 6.46

mir-75 UUGCUUUGAAGAAUUGCAGUCGGUUGCAAGCUUAAAUACAAAUCCGAAUUGUUAUUAAAGCUACCAACCGGCUUCAAGUCUGAAAGAGCA 4.71

mir-76 UCCUGUCUGGGCUUCACAAUAGUCGAAUACCUUAAAUUUCAAAAUUUGGAUAUUCGUUGUUGAUGAAGCCUUGAUGGGGG 8.77

mir-77 GCCCGUUUGGAUGGUUGUGCUCUGAGGAAAUACGCACAGAAUGUCAUUUCAUCAGGCCAUAGCUGUCCAAAUUGGUAUAG 6.12

mir-78 AUAUUGUUUCAUAGUGUCCGUAAAAUAACUAGAUUUAUUUUGUAAAAACUAUUGGAGGCCUGGUUGUUUGUGCUG 0.27

mir-79 UCUCCGAUCUUUGGUGAUUCAGCUUCAAUGAUUGGCUACAGGUUUCUUUCAUAAAGCUAGGUUACCAAAGCUCGG 3.92

mir-80 UCGUUCGCUCAGCUUUCGACAUGAUUCUGAACAAUCCGCAAGCCCAUGUUGUUGAGAUCAUUAGUUGAAAGCCGAAUGAU 4.43

mir-81 GCCCAACAGUCGGUUUUCACCGUGAUCUGAGAGCAAUCCAAAAAUGCUUUUCUGAGAUCAUCGUGAAAGCUAGUUGUUGGUCUAC 6.48

mir-82 UUUAGCAACCGGUUUUCUCUGUGAUCUACAGAAUGACAGCUAAUCGUCUGAGAUCAUCGUGAAAGCCAGUUGUUU 5.13

mir-83 AACCACUGAAUUUAUGUGUGUACUUGACGGCCAACAAGAGCAUCGAUCUAGCACCAUAUAAAUUCAGUAAUUUCG 5.23

mir-84 tctcaacagaacagccgagttagttgaaacattgtggacattatagacagtcTACAATATTACATACTACCTCAg (antisense) 4.63

mir-85 GUCGGAGCCCGAUUUUUCAAUAGUUUGAAACCAGUGUACACAUAAAUGGUUACAAAGUAUUUGAAAAGUCGUGCUCUGAA 6.26

mir-86 gtgtcaaactccggcctaagcgaatctgagcccaggcttcatttcagaacatcgaaGACTGTGGCAAAGCATTCACTTAg (antisense) 3.82

mir-87 CAUCCGGCCGCCUGAUACUUUCGUCUCAACCUCGCUGUCAGAUUGGUCGUAGGUGAGCAAAGUUUCAGGUGUGCCGGAAC 6.81

mir-90 GCGCCAUUUCGAGCGGCUUUCAACGACGAUAUCAACCGACAACUCACACUUUUGCGUGUUGAUAUGUUGUUUGAAUGCCCCUUGAAUUGGAUGCC 6.04

mir-124 AUCUGGCAUGCACCCUAGUGACUUUAGUGGACAUCUAAGUCUUCCAACUAAGGCACGCGGUGAAUGCCACGUGGC 4.48

mir-228 CCUUAUCCCGUUCGCAAUGGCACUGCAUGAAUUCACGGCUAUGCAUAACGACAGACCGCGGAUCAUACGGUACCAUAGCGGACGGUGAUGAGGUU 5.14

----------------------------------------------------------------------------------------------------------------

Table 3: SigZscre values were computed by scanning a set of fixed-length windows (55, 60, ..., 95, 100-nt) in steps of 2-nt along the

sequence. The computed maximalSigZscre was listed in the table.
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Figure 4:Zscre of local segments computed in the region from genes F62F5A.1a to F54D5.12 ofC.elegans chromosome II. The quantitative
measureZscre was computed by moving a 80-nt window in steps of 5 nt from 5’ to3’ along the sequence by EDscan. The plot was made by
plottingZscre against the position of the middle base of the local overlapping segments. The end position (position 11527161 in the chromosome
II sequence) of the gene Y62F5A.1a (antisense: 11533710-11527161) was numbered as position 1 in the plot. The five peaks clustered close to the
gene F54D5.12 in the plot are coincident with the reported miRNAs, mir-35, mir-37, mir-38, mir-39, and mir-40. We also detected other WFSs that
were clustered toward the gene Y62F5A.1a.

CONCLUSION

Rapid advances in computational biology and bioinformatics are providing new approachesto

complex biological systems. Advances in systems biology and molecular medicine require com-

bined efforts of bioinformaticists and molecular biologists. Such integrativeapproaches hold

promise for elucidating gene function and RNA-based regulation of gene expressions. With the

improvement of the integrating algorithms of statistical and computational tools of RNA folding,

pattern search, sequence and structure comparison, computational methods can be used to dis-

cover FSRs that are associated with important biological properties. The need for these kinds of

FSR discoveries is growing in proportion to the size of sequence databases, which are growing

exponentially. The ncRNAs represent an important subset of the sequence databases in which

potentially novel biological phenomena will be found. The existing tools, although alreadysuc-

cessful in finding interesting structural features of ncRNAs, can be improved further by future

development.
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